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Warning

c This work is under Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
license.
You are free to Share — copy and redistribute the ma-
terial in any medium or format.

b You must give appropriate credit, provide a link to the
license, and indicate if changes were made. You may
do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

e You may not use the material for commercial purposes.
d If you remix, transform, or build upon the material, you

may not distribute the modified material.
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Introduction

Parallel Programming

Sequential Programming versus Parallel Programming

Sequential programming
Well-known set of control-structures embedded in
programming languages.
Control structures inherently sequential.

Parallel programming
Constructs adapting sequential control structures to the
parallel world (e.g. parallel-for).

But wait!
What if we had constructs that could be both sequential
and parallel?

cbed 9/105



GrPPI

Introduction

Parallel Programming

Sequential Programming versus Parallel Programming

Sequential programming
Well-known set of control-structures embedded in
programming languages.
Control structures inherently sequential.

Parallel programming
Constructs adapting sequential control structures to the
parallel world (e.g. parallel-for).

But wait!
What if we had constructs that could be both sequential
and parallel?

cbed 9/105



GrPPI

Introduction

Parallel Programming

Sequential Programming versus Parallel Programming

Sequential programming
Well-known set of control-structures embedded in
programming languages.
Control structures inherently sequential.

Parallel programming
Constructs adapting sequential control structures to the
parallel world (e.g. parallel-for).

But wait!
What if we had constructs that could be both sequential
and parallel?

cbed 9/105



GrPPI

Introduction

Design patterns and parallel patterns

1 Introduction
Parallel Programming
Design patterns and parallel patterns
GrPPI architecture

cbed 10/105



GrPPI

Introduction

Design patterns and parallel patterns

Software design

There are two ways of constructing a software design:
One way is to make it so simple that there are
obviously no deficiencies, and the other way is to
make it so complicated that there are no obvious
deficiencies.
The first method is far more difficult.

C.A.R Hoare
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Introduction

Design patterns and parallel patterns

A brief history of patterns

From building and architecture (Cristopher Alexander):
1977: A Pattern Language: Towns, Buildings, Construction.
1979: The timeless way of buildings.

To software design (Gamma et al.):
1993: Design Patterns: abstraction and reuse of object
oriented design. ECOOP.
1995: Design Patterns. Elements of Reusable
Object-Oriented Software.

To parallel programming (McCool, Reinders, Robinson):
2012: Structured Parallel Programming: Patterns for
Efficient Computation.
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Introduction

GrPPI architecture

Some ideals

Applications should be expressed independently of the
execution model.

Multiple back-ends should be offered with simple switching
mechanisms.
Interface should integrate seamlessly with modern C++
standard library.
Make use of modern (C++14) language features.

cbed 14/105



GrPPI

Introduction

GrPPI architecture

Some ideals

Applications should be expressed independently of the
execution model.
Multiple back-ends should be offered with simple switching
mechanisms.

Interface should integrate seamlessly with modern C++
standard library.
Make use of modern (C++14) language features.

cbed 14/105



GrPPI

Introduction

GrPPI architecture

Some ideals

Applications should be expressed independently of the
execution model.
Multiple back-ends should be offered with simple switching
mechanisms.
Interface should integrate seamlessly with modern C++
standard library.

Make use of modern (C++14) language features.

cbed 14/105



GrPPI

Introduction

GrPPI architecture

Some ideals

Applications should be expressed independently of the
execution model.
Multiple back-ends should be offered with simple switching
mechanisms.
Interface should integrate seamlessly with modern C++
standard library.
Make use of modern (C++14) language features.

cbed 14/105



GrPPI

Introduction

GrPPI architecture

GrPPI

https://github.com/arcosuc3m/grppi

A header only library (might change).
A set of execution policies.
A set of type safe generic algorithms.
Requires C++14.
GNU GPL v3.
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GrPPI architecture

Setting up GrPPI

Structure.
include: Include files.
unit_tests: Unit tests using GoogleTest.
samples: Sample programs.
cmake-modules: Extra CMake scripts.

Initial setup

mkdir build
cd build
cmake ..
make
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Introduction

GrPPI architecture

CMake variables

GRPPI_UNIT_TESTS_ENABLE: Enable building unit
tests.
GRPPI_OMP_ENABLE: Enable OpenMP back-end.
GRPPI_TBB_ENABLE: Enable Intel TBB back-end.
GRPPI_EXAMPLE_APPLICATIONS_ENABLE: Enable
building example applications.
GRPPI_DOXY_ENABLE: Enable documentation
generation.
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Introduction

GrPPI architecture

Execution policies

The execution model is encapsulated by execution values.

Current execution types:
sequential_execution.
parallel_execution_native.
parallel_execution_omp.
parallel_execution_tbb.
dynamic_execution.

All top-level patterns take one execution object.
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Introduction

GrPPI architecture

Concurrency degree

Sets the number of underlying threads used by the
execution implementation.

sequential_execution⇒ 1
parallel_execution_native⇒ hardware_concurrency().
parallel_execution_omp⇒ omp_get_num_threads().

API
ex.set_concurrency_degree(4)
int n = ex.concurrency_degree()
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GrPPI architecture

Dynamic back-end

Useful if you want to take the decision at run-time.
Holds any other execution policy (or empty).

Selecting the execution back-end

grppi :: dynamic_execution execution_mode(const std::string & opt) {
using namespace grppi;
if ( "seq" == opt) return sequential_execution{};
if ( " thr " == opt) return parallel_execution_native {};
if ( "omp" == opt) return parallel_execution_omp{};
if ( "tbb" == opt) return parallel_execution_tbb {};
return {};

}
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Introduction

GrPPI architecture

Function objects

GrPPI is heavily based on passing code sections as
function objects (aka functors).

Alternatives:
Standard C++ predefined functors (e.g. std::plus<int>).
Custom hand-written function objects.
Lambda expressions.

Usually lambda expressions lead to more concise code.
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Data patterns
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2 Data patterns
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Data patterns

Map pattern

Maps on data sequences

A map pattern applies an operation to every element in a
tuple of data sets generating a new data set.

Given:
A sequence x1

1 , x
1
2 , . . . , x

1
N ∈ T1,

A sequence x2
1 , x

2
2 , . . . , x

2
N ∈ T2,

. . . , and
A sequence xM

1 , xM
2 , . . . , xM

N ∈ TM ,
A function f : T1 × T2 × . . .× TM 7→ U

It generates the sequence
f (x1

1 , x
2
1 , . . . , x

M
1 ), f (x1

2 , x
2
2 , . . . , x

M
2 ), . . . , f (x1

N , x
2
N , . . . , x

M
N )
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Map pattern

Maps on data sequences
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Data patterns

Map pattern

Unidimensional maps

map pattern on a single input data set.

Given:
A sequence x1, x2, . . . , xN ∈ T
A function f : T 7→ U

It generates the sequence:
f (x1), f (x2), . . . , f (xN)
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Data patterns

Map pattern

Key element

Transformer operation: Any operation that can perform
the transformation for a data item.

UnaryTransformer: Any C++ callable entity that takes a
data item and returns the transformed value.
auto square = [](auto x) { return x∗x; };
auto length = []( const std:: string & s) { return s.lenght() ; };

MultiTransformer: Any C++ callable entity that takes
multiple data items and return the transformed vaue.
auto normalize = [](double x, double y) { return sqrt(x∗x+y∗y); };
auto min = []( int x, int y, int z) { return std :: min(x,y,z) ; }
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Data patterns

Map pattern

Single sequences mapping

Double all elements in sequence

template <typename Execution>
std :: vector<double> double_elements(const Execution & ex,

const std::vector<double> & v)
{

std :: vector<double> res(v.size());
grppi :: map(ex, v.begin(), v.end(), res.begin() ,

[]( double x) { return 2∗x; }) ;
}
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Data patterns

Map pattern

Multiple sequences mapping

Add two vectors

template <typename Execution>
std :: vector<double> add_vectors(const Execution & ex,

const std::vector<double> & v1,
const std::vector<double> & v2)

{
auto size = std :: min(v1.size() , v2.size () ) ;
std :: vector<double> res(size);
grppi :: map(ex, v1.begin(), v1.end(), res.begin() ,

[]( double x, double y) { return x+y; },
v2.begin()) ;

}
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Data patterns

Map pattern

Multiple sequences mapping

Add three vectors

template <typename Execution>
std :: vector<double> add_vectors(const Execution & ex,

const std::vector<double> & v1,
const std::vector<double> & v2,
const std::vector<double> & v3)

{
auto size = std :: min(v1.size() , v2.size () ) ;
std :: vector<double> res(size);
grppi :: map(ex, v1.begin(), v1.end(), res.begin() ,

[]( double x, double y, double z) { return x+y+z; },
v2.begin() , v3.begin()) ;

}
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Data patterns

Map pattern

Heterogeneous mapping

The result can be from a different type.

Complex vector from real and imaginary vectors

template <typename Execution>
std :: vector<complex<double>> create_cplx(const Execution & ex,

const std::vector<double> & re,
const std::vector<double> & im)

{
auto size = std :: min(re.size () , im.size () ) ;
std :: vector<complex<double>> res(size);
grppi :: map(ex, re.begin(), re.end(), res.begin() ,

[]( double r, double i) −> complex<double> { return {r,i}; }
im.begin()) ;

}
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Data patterns

Reduce pattern

2 Data patterns
Map pattern
Reduce pattern
Map/reduce pattern
Stencil pattern
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Data patterns

Reduce pattern

Reductions on data sequences

A reduce pattern combines all values in a data set using a
binary combination operation.

Given:
A sequence x1, x2, . . . , xN ∈ T .
An identity value id ∈ I.
A combine operation c : I × T 7→ I

c(c(x , y), z) ≡ c(x , c(y , z))
c(id , x) = x̄ , where x̄ is the value of x in I.
c(id , c(id , x)) = c(id , x)
c(c(c(id , x), y), c(c(id , z), t)) = c(c(c(c(id , x), y), z), t)

It generates the value:
c(. . . c(c(id , x1), x2) . . . , xN)
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Data patterns

Reduce pattern

Homogeneous reduction

Add a sequence of values

template <typename Execution>
double add_sequence(const Execution & ex, const vector<double> & v)
{

return grppi :: reduce(ex, v.begin() , v.end(), 0.0,
[]( double x, double y) { return x+y; }) ;

}
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Data patterns

Reduce pattern

Heterogeneous reduction

Add lengths of sequence of strings

template <typename Execution>
int add_lengths(const Execution & ex, const std::vector<std::string> & words)
{

return grppi :: reduce(words.begin(), words.end(), 0,
[]( int n, std :: string w) { return n + w.length() ; }) ;

}
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Data patterns

Map/reduce pattern

Map/reduce pattern

A map/reduce pattern combines a map pattern and a
reduce pattern into a single pattern.

1 One or more data sets are mapped applying a
transformation operation.

2 The results are combined by a reduction operation.

A map/reduce could be also expressed by the
composition of a map and a reduce.

However, map/reduce may potentially fuse both stages,
allowing for extra optimizations.
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Data patterns

Map/reduce pattern

Map/reduce with single data set

A map/reduce on a single input sequence producing a
value.

Given:
A sequence x1, x2, . . . xN ∈ T
A mapping function m : T 7→ R
A reduction identity value id ∈ I.
A combine operation c : I × R 7→ I

It generates a value reducing the mapping:
c(c(c(id ,m1),m2), . . . ,mM)
Where mk = m(xk )
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Map/reduce pattern
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Data patterns

Map/reduce pattern

Single sequence map/reduce

Sum of squares

template <typename Execution>
double sum_squares(const Execution & ex, const std::vector<double> & v)
{

return grppi :: map_reduce(ex, v.begin(), v.end(), 0.0,
[]( double x) { return x∗x; }
[]( double x, double y) { return x+y; }

) ;
}
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Data patterns

Map/reduce pattern

Map/reduce in multiple data sets

A map/reduce on multiple input sequences producing a
single value.

Given:
A sequence x1

1 , x
1
2 , . . . x

1
N ∈ T1

A sequence x2
1 , x

2
2 , . . . x

2
N ∈ T2

. . .
A sequence xM

1 , xM
2 , . . . xM

N ∈ TM
A mapping function m : T1 × T2 × . . .× TM 7→ R
A reduction identity value id ∈ I.
A combine operation c : I × R 7→ I

It generates a value reducing the mapping:
c(c(c(id ,m1),m2), . . . ,mM)
Where mk = m(xk

1 , x
k
2 , . . . , x

k
N)
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Data patterns

Map/reduce pattern

Map/reduce on two data sets

Scalar product

template <typename Execution>
double scalar_product(const Execution & ex,

const std::vector<double> & v1,
const std::vector<double> & v2)

{
return grppi :: map_reduce(ex, begin(v1), end(v1), 0.0,

[]( double x, double y) { return x∗y; },
[]( double x, double y) { return x+y; },
v2.begin()) ;

}
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Data patterns

Map/reduce pattern

Cannonical map/reduce

Given a sequence of words, produce a container where:
The key is the word.
The value is the number of occurrences of that word.

Word frequencies

template <typename Execution>
auto word_freq(const Execution & ex, const std::vector<std::string> & words)
{

using namespace std;
using dictionary = std :: map<string,int>;
return grppi :: map_reduce(ex, words.begin(), words.end(), dictionary{},

[]( string w) −> dictionary { return {w,1}; }
[]( dictionary & lhs, const dictionary & rhs) −> dictionary {

for (auto & entry : rhs) { lhs [entry. first ] += entry.second; }
return lhs ;

}) ;
}
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2 Data patterns
Map pattern
Reduce pattern
Map/reduce pattern
Stencil pattern
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Data patterns

Stencil pattern

Stencil pattern

A stencil pattern applies a transformation to every element
in one or multiple data sets, generating a new data set as
an output

The transformation is function of a data item and its
neighbourhood.
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Data patterns

Stencil pattern

Stencil with single data set

A stencil on a single input sequence producing an output
sequence.

Given:
A sequence x1, x2, . . . , xN ∈ T
A neighbourhood function n : I 7→ N
A transformation function f : I × N 7→ U

It generates the sequence:
f (n(x1)), f (n(x2)), . . . , f (n(xN))
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Stencil pattern

Stencil pattern
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Data patterns

Stencil pattern

Single sequence stencil

Neighbour average

template <typename Execution>
std :: vector<double> neib_avg(const Execution & ex, const std::vector<double> & v)
{

std :: vector<double> res(v.size());
grppi :: stencil (ex, v.begin() , v.end(),

[]( auto it , auto n) {
return ∗ it + accumulate(begin(n), end(n));

},
[&](auto it ) {

vector<double> r;
if ( it !=begin(v)) r .push_back(∗prev(it));
if (distance( it ,end(end))>1) r.push_back(∗next(it));
return r ;

}) ;
return res;

}
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Stencil pattern

Stencil with multiple data sets

A stencil on multiple input sequences producing an output
sequence.

Given:
A sequence x1

1 , x
1
2 , . . . , x

1
N ∈ T1

A sequence x2
1 , x

2
2 , . . . , x

2
N ∈ T1

. . .
A sequence xM

1 , xM
2 , . . . , xM

N ∈ T1
A neighbourhood function n : I1 × I2 × IM 7→ N
A transformation function f : I1 × N 7→ U

It generates the sequence:
f (n(x1)), f (n(x2)), . . . , f (n(xN))
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Stencil pattern

Multiple sequences stencil

Neighbour average

template <typename It>
std :: vector<double> get_around(It i, It first , It last ) {

std :: vector<double> r;
if ( i != first ) r .push_back(∗std::prev(i));
if (std :: distance( i , last )>1) r .push_back(∗std::next(i)) ;

}

template <typename Execution>
std :: vector<double> neib_avg(const Execution & ex, const std::vector<double> & v1,

const std::vector<double> & v2)
{

std :: vector<double> res(std::min(v1.size(),v2.size () ) ) ;
grppi :: stencil (ex, v.begin() , v.end(),

[]( auto it , auto n) { return ∗ it + accumulate(begin(n), end(n)); },
[&](auto it , auto it2 ) {

vector<double> r = get_around(it1, v1.begin(), v1.end()) ;
vector<double> r2 = get_around(it2, v2.begin(), v2.end()) ;
copy(r2.begin() , r2.end(), back_inserter(r) ) ;
return r ;

},
v2.begin()) ;

return res;
}
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Divide/conquer pattern

Divide/conquer pattern

A divide/conquer pattern splits a problem into two or more
independent subproblems until a base case is reached.

The base case is solved directly.
The results of the subproblems are combined until the final
solution of the original problem is obtained.

Key elements:
Divider: Divides a problem in a set of subproblems.
Solver: Solves and individual subproblem.
Combiner: Combines two solutions.
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Divide/conquer pattern

A patterned merge/sort

Ranges on vectors

struct range {
range(std::vector<double> & v) : first {v.begin() }, last {v.end()} {}
auto size() const { return std :: distance( first , last ) ; }
std :: vector<double> first, last ;

};

std :: vector<range> divide(range r) {
auto mid = r. first + r .size () / 2;
return { { r . first , mid}, {mid, r . last } };

}
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Divide/conquer pattern

A patterned merge/sort

Ranges on vectors

template <typename Execution>
void merge_sort(const Execution & ex, std::vector<double> & v)
{

grppi :: divide_conquer(exec,
range(v),
[]( auto r) −> vector<range> {

if (1>=r.size () ) return { r };
else return divide( r ) ;

},
[]( auto x) { return x; },
[]( auto r1, auto r2) {

std :: inplace_merge(r1.first , r1. last , r2. last ) ;
return range{r1. first , r2. last };

}) ;
}

cbed 57/105



GrPPI

Streaming patterns

1 Introduction

2 Data patterns

3 Task Patterns

4 Streaming patterns

5 Writing your own execution

6 Evaluation

7 Conclusions

cbed 58/105



GrPPI

Streaming patterns

Pipeline pattern

4 Streaming patterns
Pipeline pattern
Execution policies and pipelines
Farm stages
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Streaming patterns

Pipeline pattern

Pipeline pattern

A pipeline pattern allows processing a data stream where
the computation may be divided in multiple stages

Each stage processes the data item generated in the
previous stage and passes the produced result to the next
stage
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Pipeline pattern

Standalone pipeline

A standalone pipeline is a top-level pipeline.
Invoking the pipeline translates into its execution.

Given:
A generater g : ∅ 7→ T1 ∪∅
A sequence of transformers ti : Ti 7→ Ti+1

For every non-empty value generated by g, it evaluates:
fn(fn−1(. . . f1(g())))
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Pipeline pattern

Generators

A generator g is any callable C++ entity that:
Takes no argument.
Returns a value of type T that may hold (or not) a value.
Null value signals end of stream.

The return value must be any type that:
Is copy-constructible or move-constructible.
T x = g() ;

Is contextually convertible to bool
if (x) { /∗ ... ∗/ }
if (! x) { /∗ ... ∗/ }

Can be derreferenced
auto val = ∗x;

The standard library offers an excellent candidate
std::experimental::optional<T>.
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Pipeline pattern

Simple pipeline

x -> x*x -> 1/x -> print

template <typename Execution>
void run_pipe(const Execution & ex, int n)
{

grppi :: pipeline (ex,
[ i=0,max=n] () mutable −> optional<int> {

if ( i<max) return i;
else return {};

},
[]( int x) −> double { return x∗x; },
[]( double x) { return 1/x; },
[]( double x) { cout << x << "\n"; }

) ;
}
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Streaming patterns

Pipeline pattern

Nested pipelines

Pipelines may be nested.

An inner pipeline:
Does not take an execution policy.
All stages are transformers (no generator).
The last stage must also produce values.

The inner pipeline uses the same execution policy than the
outer pipeline.
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Pipeline pattern

Nested pipelines

x -> x*x -> 1/x -> print

template <typename Execution>
void run_pipe(const Execution & ex, int n)
{

grppi :: pipeline (ex,
[ i=0,max=n] () mutable −> optional<int> {

if ( i<max) return i;
else return {};

},
grppi :: pipeline (

[]( int x) −> double { return x∗x; },
[]( double x) { return 1/x; }) ,

[]( double x) { cout << x << "\n"; }
) ;

}
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Pipeline pattern

Piecewise pipelines

A pipeline can be piecewise created.

x -> x*x -> 1/x -> print

template <typename Execution>
void run_pipe(const Execution & ex, int n)
{

auto generator = [ i=0,max=n] () mutable −> optional<int> {
if ( i<max) return i; else return {};

};
auto inner = grppi :: pipeline (

[]( int x) −> double { return x∗x; },
[]( double x) { return 1/x; }) ;

auto printer = []( double x) { cout << x << "\n"; };

grppi :: pipeline (ex, generator, inner, printer ) ;
}
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Execution policies and pipelines

4 Streaming patterns
Pipeline pattern
Execution policies and pipelines
Farm stages
Filtering stages
Reductions in pipelines
Iterations in pipelines
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Execution policies and pipelines

Ordering

Signals if pipeline items must be consumed in the same
order they were produced.

Do they need to be time-stamped?

Default is ordered.

API
ex.enable_ordering()
ex.disable_ordering()
bool o = ex.is_ordered()
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Execution policies and pipelines

Queueing properties

Some policies (native and omp) use queues to
communicate pipeline stages.

Properties:
Queue size: Buffer size of the queue.
Mode: blocking versus lock-free.

API
ex.set_queue_attributes(100, mode::blocking)
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Farm stages
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Farm stages

Farm pattern

A farm is a streaming pattern applicable to a stage in a
pipeline, providing multiple tasks to process data items
from a data stream

A farm has an associated cardinality which is the number
of parallel tasks used to serve the stage
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Farm stages

Farms in pipelines

Square values

template <typename Execution>
void run_pipe(const Execution & ex, int n)
{

grppi :: pipeline (ex,
[ i=0,max=n] () mutable −> optional<int> {

if ( i<max) return i;
else return {};

},
grppi :: farm(4

[]( int x) −> double { return x∗x; }),
[]( double x) { cout << x << "\n"; }

) ;
}
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Farm stages

Piecewise farms

Square values

template <typename Execution>
void run_pipe(const Execution & ex, int n)
{

auto inner = grppi :: farm(4 []( int x) −> double { return x∗x; });

grppi :: pipeline (ex,
[ i=0,max=n] () mutable −> optional<int> {

if ( i<max) return i;
else return {};

},
inner,
[]( double x) { cout << x << "\n"; }

) ;
}
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Filtering stages
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Filtering stages

Filter pattern

A filter pattern discards (or keeps) the data items from a
data stream based on the outcome of a predicate.
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Filtering stages

Filter pattern

A filter pattern discards (or keeps) the data items from a
data stream based on the outcome of a predicate
This pattern can be used only as a stage of a pipeline

Alternatives:
Keep: Only data items satisfying the predicate are sent to
the next stage
Discard: Only data items not satisfying the predicate are
sent to the next stage
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Filtering stages

Filtering in

Print primes

bool is_prime(int n);

template <typename Execution>
void print_primes(const Execution & ex, int n)
{

grppi :: pipeline (exec,
[ i=0,max=n]() mutable −> optional<int> {

if ( i<=n) return i++;
else return {};

},
grppi :: keep(is_prime),
[]( int x) { cout << x << "\n"; }

) ;
}
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Filtering stages

Filtering out

Discard words

template <typename Execution>
void print_primes(const Execution & ex, std::istream & is )
{

grppi :: pipeline (exec,
[& file ]() −> optional<string> {

string word;
file >> word;
if (! file ) { return {}; }
else { return word; }

},
grppi :: discard ([]( std :: string w) { return w.length() < 4; },
[]( std :: string w) { cout << x << "\n"; }

) ;
}
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Reductions in pipelines

4 Streaming patterns
Pipeline pattern
Execution policies and pipelines
Farm stages
Filtering stages
Reductions in pipelines
Iterations in pipelines

cbed 79/105



GrPPI

Streaming patterns

Reductions in pipelines

Stream reduction pattern

A stream reduction pattern performs a reduction over the
items of a subset of a data stream
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Reductions in pipelines

Stream reduction pattern

A stream reduction pattern performs a reduction over the
items of a subset of a data stream

Key elements
window-size: Number of elements in a window reduction
offset: Distance between the begin of two consecutive
windows
identity: Initial value used for reductions
combiner: Operation used for reductions
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Reductions in pipelines

Windowed reductions

Chunked sum

template <typename Execution>
void print_primes(const Execution & ex, int n)
{

grppi :: pipeline (exec,
[ i=0,max=n]() mutable −> optional<double> {

if ( i<=n) return i++;
else return {};

},
grppi :: reduce(100, 50, 0.0,

[]( double x, double y) { return x+y; }) ,
[]( int x) { cout << x << "\n"; }

) ;
}
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Iterations in pipelines

Stream iteration pattern

A stream iteration pattern allows loops in data stream
processing.

An operation is applied to a data item until a predicate is
satisfied.
When the predicate is met, the result is sent to the output
stream.

Key elements:
A transformer that is applied to a data item on each
iteration.
A predicate to determine when the iteration has finished.
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Iterations in pipelines

Iterating

Print values 2n ∗ x

template <typename Execution>
void print_values(const Execution & ex, int n)
{

auto generator = [ i=1,max=n+1]() mutable −> optional<int> {
if ( i<max) return i++;
else return {};

};

grppi :: pipeline (ex,
generator,
grppi :: repeat_until (

[]( int x) { return 2∗x; },
[]( int x) { return x>1024; }

) ,
[]( int x) { cout << x << endl; }

) ;
}
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Writing your own execution

Addine a new policy

Adding a new execution policy is done by writing a new
class.

No inheritance needed.
“Inheritance is the base class of all evils” (Sean Parent).

No dependency from the library.
Additionally configure some meta-functions (until we have
concepts).

cbed 87/105



GrPPI

Writing your own execution

My custom execution

my_execution

class my_execution {
my_execution() noexcept;

void set_concurrency_degree(int n) const noexcept;
void concurrency_degree() const noexcept;

void enable_ordering() noexcept;
void disable_ordering() noexcept;
bool is_ordered() const noexcept;

// ...
};

template <>
constexpr bool is_supported<my_execution>() { return true; }
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Adding a pattern

my_execution::map

class my_execution {

// ...

template <typename ... InputIterators, typename OutputIterator,
typename Transformer>

constexpr void map(std::tuple<InputIterators...> firsts ,
OutputIterator first_out , std :: size_t sequence_size,
Transformer && transform_op) const;

// ...
};

template <>
constexpr bool supports_map<my_execution>() { return true; }
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Some helpers in the library

Applying a function to a tuple of iterators

template <typename F, typename ... Iterators, template <typename ...> class T>
decltype(auto) apply_deref_increment(

F && f,
T<Iterators ...> & iterators )

Takes a function f and a tuple of iterators (e.g. result of
make_tuple(it1, it2, it3).
Returns f(*it1++, *it2++, *it3++).
Very convenient for implementing data patterns.
More like this in include/common/iterator.h.
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Implementing map

map

template <typename ... InputIterators, typename OutputIterator,
typename Transformer>

void my_execution_native::map(std::tuple<InputIterators...> firsts ,
OutputIterator first_out , std :: size_t sequence_size,
Transformer transform_op) const

{
using namespace std;
auto process_chunk = [&transform_op](auto fins, std::size_t size, auto fout)
{

const auto l = next(get<0>(fins) , size) ;
while (get<0>(fins)!= l ) {
∗fout++ = apply_deref_increment(

std :: forward<Transformer>(transform_op), fins);
}

};
// ...
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Implementing map

map

// ...
const int chunk_size = sequence_size / concurrency_degree_;
{

some_worker_pool workers;
for ( int i=0; i !=concurrency_degree_−1; ++i) {

const auto delta = chunk_size ∗ i;
const auto chunk_firsts = iterators_next ( firsts ,delta) ;
const auto chunk_first_out = next( first_out , delta) ;
workers.launch(process_chunk, chunk_firsts, chunk_size, chunk_first_out);

}

const auto delta = chunk_size ∗ (concurrency_degree_ − 1);
const auto chunk_firsts = iterators_next ( firsts ,delta) ;
const auto chunk_first_out = next( first_out , delta) ;
process_chunk(chunk_firsts, sequence_size − delta, chunk_first_out);

} // Implicit pool synch
}
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Evaluation

Plataform:
2 × Intel Xeon Ivy Bridge E5-2695 v2.
Total number of cores: 24.
Clock frequency: 2.40 GHz.
L3 cache size: 30 MB.
Main memory: 128 GB DDR3.
OS: Ubuntu Linux 14.04 LTS, kernel 3.13.

Software:
Compiler: GCC 6.2.
OpenMP 4.0: included in GCC.
ISO C++ Threads: included in the C++ STL.
Intel TBB: www.threadingbuildingblocks.org
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Evaluation

Use case

Video processing application for detecting edges using the
filters:

Gaussian Blur
Sobel operator

It uses a pipeline pattern:
S1: Reading frames from a camera
S2: Apply the Gaussian Blur filter (it can use a farm)
S3: Apply the Sobel operator (it can use a farm)
S4: Writing frames into a file

Parallel variants:
using the back ends directly
using
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Pipeline compositions

Pipeline+farm compositions made in the video application:

10 D. del Rio Astorga et al.

the parallel Pipeline pattern, in which the first stage reads the frames from
a video file passed as input; the second and third stages apply the Gaussian
Blur and Sobel filters, respectively; and the last stage dumps the processed
frames to an output video file.

To carry out the experimental evaluation, we first parallelize this video ap-
plication using the above-mentioned execution frameworks and the proposed
interface. Afterwards, we compare both performance and lines of code required
to implement such parallel versions with respect to the sequential one. Note
that for the case of OpenMP, the implementation of the Pipeline pattern is not
straightforward: it requires the use of queues to communication items between
stages. In our particular case we leveraged a variant of the Michael and Scott
lock-free queue in C++ [13]. To further experiment with our interface, we imple-
ment di↵erent versions of the video application using the execution frameworks
and distinct compositions of patterns in its main pipeline. As depicted in Fig. 2,
(a) we use a non-composed pipeline ( s | s | s | s ); (b) a pipeline composed of a
farm in its second stage ( s | f | s | s ); (c) a pipeline composed of a farm in its
third stage ( s | s | f | s ); and (d) a pipeline composed of two farms in the second
and third stages ( s | f | f | s ).

(a) Non-composed Pipeline. (b) Pipeline ( s | f | s | s ).

(c) Pipeline ( s | s | f | s ). (d) Pipeline ( s | f | f | s ).

Fig. 2: Pipeline and Farm compositions of the video application.

5.1 Analysis of the Usability

In this section we analyze the usability and flexibility of the generic interface
developed. To analyze this aspect, we compare the number of lines required to
implement the parallel version of the application leveraging the interface, with
respect to using directly the parallel execution frameworks. Table 1 summarizes
the percentage of additional lines introduced into the sequential source code
in order to implement such parallel versions using the above-mentioned pattern
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Usability of

Pipeline % of increase of lines of code w.r.t sequential
composition C++ Threads OpenMP Intel TBB
(p |p |p |p) +8.8 % +13.0 % +25.9 % +1.8 %
(p |f |p |p) +59.4 % +62.6 % +25.9 % +3.1 %
(p |p |f |p) +60.0 % +63.9 % +25.9 % +3.1 %
(p |f |f |p) +106.9 % +109.4 % +25.9 % +4.4 %

cbed 97/105



GrPPI

Evaluation

Performance: frames per second
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Figure 4. FPS w/ and w/o using GRPPI along with the different frameworks and Pipeline compositions.

5.3. Performance analysis of stream vs data patterns

Our next analysis compares the performance among Pipeline compositions that combine stream
and data parallel patterns. Figure 5 shows the FPS obtained for different video resolutions and
parallel frameworks using GRPPI in different Pipeline compositions containing both stream and
data patterns, Farm and Stencil, respectively. As can be seen, both C++ Threads and Intel TBB
frameworks deliver similar performance results for all compositions. A more detailed inspection
of these plots unveils an inflection point where the data-stream compositions start attaining better
performance. This occurs from 1080p on for C++ Threads and from 1440p on for TBB. Note
as well the slight difference using only a Stencil for computing the first or second filter. The
reason behind this behavior is the higher computational load of the Sobel with respect to the
Gaussian Blur filter. Regarding the OpenMP framework, it can be clearly seen that the stream-
stream (p |f |f |p) composition delivers better results than using stream-data constructions. This
is mainly because the worker threads in the GRPPI-Farm pattern leverage OpenMP tasks that are
active during the whole video processing, while the Stencil implementation creates and destroys a
task each time a video frame is processed. We figured out that the GCC-OpenMP implementation
does not make use of a thread pool and, therefore, the threads in each Stencil computation are
recurrently created and destroyed. Consequently, stream-data compositions in OpenMP suffer from
considerable performance degradations.

Figure 5. FPS for different frameworks and Pipeline compositions with stream and data patterns.

Copyright c� 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe
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Evaluation

Observations

Using farm for both stages leads an improved FPS rate.

Using farm for only one stage does not any bring
significant improvement.

Impact of on performance
Negligible overheads of about 2%

Impact on programming efforts
Significant less efforts with respect to other programming
models
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Summary

An unified programming model for sequential and parallel
modes.
Multiple back-ends available.
Current pattern set:

Data: map, reduce, map/reduce, stencil.
Task: divide/conquer.
Streaming: pipeline with nesting of farm, filter,
reduction, iteration.

Current limitation:
Pipelines cannot be nested inside other patterns (e.g.
iteration of a pipeline).

cbed 101/105



GrPPI

Conclusions

Future work

Integrate additional backends (e.g. FastFlow, CUDA).
Eliminate metaprogramming by using Concepts.
Extend and simplify the interface for data patterns.
Support multi-context patterns.
Better support of NUMA for native back-end.
More patterns.
More applications.
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GrPPI

https://github.com/arcosuc3m/grppi
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